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The flow of a viscous incompressible fluid past a depression in the surface of a 

body at high Reynolds numbers was investigated in /l/ by the method of match- 

ing asymptotic expansions. An unusual, from the point of view of general theory, 
boundary value problem was formulated for boundary layer equations which in 

its main approximation defined the motion of fluid in the proximity of the sepa- 

ration zone boundary. Questions of uniqueness of the solution of this boundary 

value problem are considered below in relation to two approximations of equa- 

tions of the boundary layer. 

Let us consider the flow of a viscous incompressible fluid past a depression in the sur- 

face of a body, which induces a separation zone of finite dimensions (Fig. 1). We shall 
consider this zone - the circulation flow region 

/ - as developed (i. e. not infinitely splitting up 

and nonvanishing for Re --+ w). According to 
/l/ the over-all flow picture can be presented 

as follows. The oncoming stream (region I of 
translational motion) is separated from the re- 

gion of circulation motion by the streamline 

ABC . The limit state of the flow of a viscous 

incompressible fluid in that region for Re -+ x) 
P (if it exists) according to the Prandtl- Batchelor 

Fig. 1 
theorem /2/ is the flow of an inviscid fluid with 

constant vorticity 0 (the viscosity coefficient 

is assumed constant). At reasonably high tie 
numbers at the boundary of constant vorticity region 3 there exist the following bound- 

ary layers: the mixing layer (region 2) and the boundary layer next to the wall (region 
4). It was also assumed in /l/ that solutions of equations for inviscid flows can be used 

as the principal approximation for defining the flow which conforms to the complete 
Navier-Stokes equations /3/. These solutions are intended for matching boundary layers 

2 and 4. 
We introduce in regions 2 and 4 (Fig. 1) boundary layer coordinates s and 1V = 

n. / e (s is the length of arc of the contour ABCDA, measured from point A, 1~ is 
the length of the instantaneous normal to ABCDA external in relation to region 3: 
and e --_ He-‘/l). In these coordinates the boundary layer contained between the contour 

ABCDA and the boundary of region 3 becomes a half-band or = (U < s < SA, 
iV < U} (Fig. 2) which, owing to the flow cyclicity in the depression, can be periodic- 
ally continued with respect to s over the whole negative half-plane, the part of the 
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mixing layer lying above the dividing streamline ABC (Fig. 1) is transformed into the 
half-band o, = (0 < s < SC, N > 0}, and the depression wall into the half-band 
I$ = {SC < s < SA, N > 0) (shaded in Fig, 2). Obviously era U u3 can be period- 

Fig. 2 

ically continued with respect to s over the 

whole positive half-plane. (The plane with 

omitted half-bands (see Fig. 2) is called the 
a -region. ) 

The flow cyclicihy manifests itself by the 

periodicity of boundary conditions. Along 

straight lines of the form s = ksA (k = 0, 
&I,. . .) velocity distributions with res- 

pect to &are the same, and for iV > 0 are 

determined by the profile of the oncoming 

boundary layer at point A. That profile 

may be assumed to be known. At segments 

Of aXki S [kSA + SC < s < (k + 1)sAl 

the flow velocity vanishes (the condition of sticking). 
Solution of this boundary value problem for the o-region by the method of asympto- 

tic expansion in accordance with /l/ must con~nuously merge with the solutions of 

problems of inviscid flow in regions 1 and 3 when N -+ + (x, and iv --t - 00 , 
respectively. 

The formulated boundary value problem (first considered in /l/) is not typical of the 

theory of the boundary layer owing to the shape of the region for which a solution is 

sought, and by the character of the boundary condition, which makes it necessary to in- 

vestigate the conditions of uniqueness of its solvability. Elucidation of the latter condi- 

tion is needed in this case for the correct mathematical formulation of the boundary va- 

lue problem. It will be shown below that generally the boundary condition for N-t. oo 
is overdetermining, and the solution (if it exists) of the problem in two approximations 
of the boundary layer theory makes it possible to determine all unknown parameters, 

viz. total pressure pa3 and vorticity ws in region d, which is the asymptotics of solu- 
tion for N 4 --00. 

That the considered boundary value problem (on condition of boundedness of its solu- 

tion) does not actually necessitate the setting of a boundary condition for fi -+ -00, 

can be shown by the following example. Let us take advantage of the fact that the pass- 
ing to variables s and 9 (I# is the stream function) leaves the o-region shape and the 

form of boundary conditions unchanged, while the boundary layer equations assume the 

form of equations of heat conduction (the Mises form /4/). Because of this we shall con- 
sider a boundary value problem, similar to the described above, for the equation of heat 
conduction. 

It was found that in that case there exists a unique function w (s, 9) E C&,s (o) 
bounded in o and satisfying in it the following equation and boundary conditions 

zu, = w+!J (1) 
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where (a (4) is a known bounded function and k - 0, -& 1, . . . 
To prove this we reduce the problem (1)1 (2) to an integral equation. For 9 < 0 we 

use the form of solution of the problem without initial conditions, i. e. the solution of 

the equation of heat conduction that satisfies boundary conditions specified for all s :;, 

--33 /5/ 
w (s, 9) = (4np j q?(s-T)-3%xp/- -‘t(yJw(T, O)dz (3) 

--m 

where formula (4) represent the boundary condition with, so far, unknown function p (s). 

We denote sA E A and SC G 6’ , and set s = 0 in (3). Using the periodic&y of the 

boundary condition (4), we write 

z# (0, 9) = (4n)+# 5 f 11 (z) Fk (z) dz, Fk (s) = (kA - s)-I:? x (5) 
k=l o 

exp - 
[ 

*2 
4 @A - s) I 

Let us assume that p (s) is continuous along segment [O, Cl and that max ( p(s) I= 

M. Since the series 
i 1 p (s) 1 F/z(s) < M 2 (kA - C)+‘z 
k=l k=l 

(6) 

is uniformly convergent with respect to s (and also with respect to Zr;), the change of 
the sequence of summation and integration in (5) yields for all ‘tc, < 0 

~($)=:((o,+) = (4ft)-‘+f II i &(T)dZ. (7) 
0 k=l 

The solution of problem (l), (2) in the band 0 < s < C can be presented in the 

form of the Poisson’s integral 

In virtue of the definition (7) of function cp &I) and of estimate (6), it is permissible 
to alter in (8) the sequence of summation and integration with respect to E as well as 
that of integration with respect to E and z. 
the integral equation 

As thecresult, we obtain from (8) for I& =: 0 

w (s, 0) = p (s) = (4n)-lS p (z) liT (s, z) dz + 4 (8) (91 

K (s, 0) EG s”is 5 i E(k_4 
k=1-50 -Cm 

q (8) = (41Ts)-*,‘2 ‘1 
i, 

a (F) exp ( - -$-) & 
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The definition of the kernel H (s, 0) clearly implies that 

K (s, 0) = (4s)‘~~ 5 (kA - e)-*‘* < fM,l/S 
k=l kA+s-e (10) 

which shows that the integral operator in (9) is continuous with respect to s and, conse- 
quently,solutions (9) are continuous along segment [O, Cl. This confirms tie previously 

made assumption about the continuity of j.& (S). It follows from (10) that the norm of 

K (s, 9) is bounded in La (0) and, consequently, (9) is a Fredholm equation of the se- 
cond kind. According to the general theory the characteristic set of Fredholm operators 

is not greater than denumerable /6/ and in virtue of (9) depends parametrically on A 
and C. Hence the number h. = 4rt can be a characteristic not more than a denume- 

rable number of times (depending on the values of A and C). This implies that solu- 

tion (9) together with that of problem (l), (2) is unique for almost any finite A and C. 
This means that the conditions for 9 -+ f 00, function a ($) , and the condition of 

solution periodicity uniquely define the solution in the negative half-plane, in particular 

for 9 + - ry). 

Let us consider the boundary value problem in layer 2 and 4 in the two approxima- 

tions of the boundary layer theory. 

We represent the tangential and normal velocity component, denoted by u and v , 
respectively, and pressure p in the form of the following asymptotic expansions in E = 
Ho-‘/*: 

U (s, ?2; 8) = 740 (s, N) + EnI (s, N), n (a, n; a> = ano (s, N) + 

eau, (s, N), p (s, n; E) = PO L% N) + EPl b.7 N) 

The equations of motion can be represented to within terms of order e- in the follow- 
ing form I?/: 

nono, + UOUON + PO, - GONN + 8 wo, -I- Uo%, - fi~oU0, + (11) 

~1~0~ + uoulN 4 xuovo - xNpos + PI, - ulNN - 9~~0~) = 0 

PON + 8 (PIN - xuo*) = 0, uo, +uoN t-E@l, f4,$_fl~O~ +x2$) =o 

where x (s) is the current curvature of the contour ABCDA (streamlines of an invis- 

cid flow). 

N 0 t e . The zero equalities in (11) represent equalities to the sum of terms of expan- 

sion of the Navier-Stokes equations in powers of E of order ea and higher. 

Taking this into consideration, we add to the last equation of system (11) the extraor- 
dinary terms x&sNv,, and xe2ur and denote (1 -!- xslv)(v, + EVJ E V and ug + 

EU1 E u. This equation then assumes the form u, f i/‘?v = 0. We introduce the 
stream function $.v = U, and - ?& = I’, and pass to the Mises variables s and Ift. 
As the result, the first two equations in (11) are transformed into equations of second or- 
der partial derivatives of the parabolic kind 

(no2 / 2)s -l- EUls = uo (uo2 I %J+ + fo (s) + e [uon,JnL + b (no*) Ul+ + (12) 

d f@o* UOJI’ ~0~~ @l + g 6 41 %*I x + fl WI 

where fo (s) and f, (s) are continuous functions determined by the flow parameters at 
the boundaries of region 2 (9 --+ & CQ). The boundary conditions 

U(O?$) = U(A,$) =a,&) +ea,(*), +>o (13) 

li (a, 0) = 0, C<s<A (14) 
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are similar to (2). 

The right-hand part of (13) defines the profile of the boundary layer velocities atpoint 

A 0fthewallAA’; for W< -t 00 function a, ($> is bounded, while a, (9) in- 

creases with increasing q. Functions us (8, 9) and Ur (s, q) have the same properties 

when II, -+ t_ 00 , respectively. 
When deriving the boundary condition for I@ < 0 it is necessary to consider the vari- 

ation of the profile of velocities U in the e-vicinity of angle points A and (regions 
5 and 6 in Fig. I). These variations are defined by the differences 

(i.e. the difference between the values of u at exit from and entry to each region). 

According to 131 fit ($) = PA. (9) s 0. F ur th ermore we consider in accordancewi~ 

/I, 3/ that the complete asymptotics of the Navier-Stokes equations at a corner point 

is such that fUndiOnS rc (I#) and 7-4 (q) are bounded and completely determined by 

the local problem of flow in regions 5 and 6 (Fig. 1) and, consequently, it is possible 

to set at the exit from these regions the problem of continuation of the boundary layer. 

Hence, if u0 (s, $1) denotes the part of solution of the considered problem which is con- 

tinuous in o1 u ‘T, the third boundary condition is defined by 

U(%V) = UO(AYW) +7cW +rA(q), V-CO (15) 

Let us elucidate the conditions of uniqueness of the solution of problem (12) - (15) in 

region or u era. 
Theorem. A unique solution of problem 

L&j, (w) - a (.%qJ)w*+ + b (&w& + c (3, q)w - ws = 4 (s,JP,) (16) 

w (O,q) = h (49, 'II, > 0; w(O,q) = w(A99) +rcw -t (17) 
TfA (q), v < 0; w (ST 0) = 0, c < s-=C A 

exists in region o1 U crs , if the following assumptions are satisfied : 

1) coefficients a, b and c are bounded in or u ~a , are continuous, and satisfy 

the Hblder conditions 

1 b (s, q‘) - b (s, $0 I\< Icf1 1 qf - ‘ic1 pi I c 6% 9’) - 

C (S, 9) I< Mi 1 V’ - It) fhzt &I > O 

2) u (s, I#) satisfies the inequality a (s, q) > p > 0 for any(s, $)Eor U 0s; 
3) derivatives a+, &JO and DJ, exist in crt U 02, are bounded, continuous, ana 

satisfy the Hlllder condition with respect to 9; 
4) function 4 (s, 9) is continuous in crt l_J 0; and for 0 < s < A satisfies the 

estimate 
(18) 

5) function h (9) is continuous for 0 .< I$ < f- 00 and, al.so,satisfies estimate 

(13); 7'~ (#and 'I'A b1) are bounded and continuous. 

Proof. Conditions (1) and (2) of the theorem ensure the existence of a unique fun- 
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damental solution Z (s, 9; T, E) of the homogeneous equation (16) in the layer B = 

{O<s\<C,--oO\<=G++oo) h3/. 
Let us prove that 

i-m 

w(s,$) = -it& 1 z(S,W;~,5)9(T.~)dS++~Z(s,~;zr5) x (19) 

0 (Q & =“v, (G) + vs (G $‘) 

-co 

is the solution of Eq. (16) in layer H, which satisfies the initial condition 

where cp (9) , a function yet to be determined, is continuous and satisfies (18). 

On the basis of estimates 

obtained in /8/ and of condition (4) of this theorem we have 
Cm 

(20) 

which implies that V, (s, $) is continuous in g and satisfies the initial zero condi- 

tion. Furthermore, the integrals 

in virtue of (21) are continuous with respect to s and I# , and are uniformly convergent. 

From this, using the following properry of function Z (s, I#; T, E) : 

we find that V, (s, I$) satisfies the equation L,, o (V, (s, IJ)) = Q (s, I#), The proof 
that v, (s, I#) satisfies the equation l,,, P (V, (s, $)) = 0 and the initial condition 
(20) is similar. 

For s = C - 0 from (19) we obtain 



Condition (3) of the theorem ensures the existence of operator Lt, E, 

conjugate of L,, 6 , as well as the presentation of any solution z!‘ (s, 9;) of the homo- 

geneous equation (16) in the half-band Q Pz (c < .S < A, - ,x) < tb < 0) inthe 
form ./8/ 

Function u (S, 9,; T, g) is subordinated to conditions : 
u (s, 9; x, E) is determinate in B and for r < s satisfies the equation 

L,X, 1&) = I) ; 
2”. lim v (s, 9; t, E) =I 0 ; 

3". ;-ii, 0; IT, g) = z (s, 0; z, g> 
We seek function u (s, 9; T, E) in the form of the potential of the double layer of 

unknown density w (s; T, ZJ) /8/ 

Equation (24) implies the estimate /8/ 

1 P (2 (s, 9; T, E)) I< M, (s - z)++’ exp [ - cl2 (z_<r)2) ] (25) 

where (M5, ?L and cc2 are positive constants. 

According to /9/ the relationship 

lim u (s, $; z, E) = ‘/a 0 (s; Z, E) + U (s7 0; r7 g) 
Q-+0 

(theorem about the potential jump of a double layer) is valid. Hence, satisfying condi- 
tion 3O , we obtain for the determination of o (s; Z, t) the integral Volterra equation 
of the second kind 

$@;z,E)+jdB i P(Z(s,O;e,5))w(e;~,E)dt=Z(S10;~~~) 

We seek its solution in&e fir; of series 

o(s; r, E) = i o,(s; z, 5) (26) 
?TZ=r 
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Let us prove the convergence of series (26) for s > z. In virtue of (21) and (25) 

we have 

1% (s; 7, E) I< M, (s - p exp[- g] 

1 w2 ts; z, g) 1 < iv62 i ls - ey-*~~+k a8 +f [(s - e) (e - Nit x 
r --m 

where I? (a) is the gamma function. 

by induction with respect to ??z it is possible to show that for n > 3 

I %t ts; z, E) I< Mern f-p)? P-1 (2” + ‘12) (s -z)’ 
rltnz - 1) (h + ‘id] (rn - 1) (h + l/2) 

x 127) 

exp -- 
[ 

p&” - 
S--t i 

I ~~ (m - I) (3, -+ 1) - 1 
2 

Since for 172. (h + ‘/a) > 2 we have r Im (3L + V2)l > im (h + V,)l! , hence 
(27) implies the absolute and uniform convergence of series (26) for a > 7, as well as 

the estimate 

Taking into account (25), from (23) and (28) we obtain 

hence hi (s, 11;; z, E) satisfies condition 2” * Since by condition (3) of the theorem 

I,:,-, (2 (s, 9; r, 5)) = 0 (see /8/t. the fulfilment of condition 1 0 is evident. Thus 
me existence of a unique Green’s function G (a, VP; z, 5) is established. 

Let us consider function cpc ($) EE w (c - 0, vu) for - 00 < I$ < 0, where 

w (C - 0, 9) is determined by (22). A proof similar to that of (19) shows that 

w (SI V,) = - i dX i G (s, 9; r, E) Q (C&% -!- j G (St 9; C, E) fTC (E) -t TC (@I & 
C --m --m 



is the solution of Eq. (16) in the half-band Q, which satisfies boundary conditions 
w (C, *) = cpc &) for - CIC ,< $ < 0 and w (s, 0) := 0. Allowing for the dis- 

continui~ of the solution of problem (16), (17) for s mm~ _.L + 0 and 11) < 0, for the 

determination of (r: (I!,; we obtain 

where 
(29) ‘p(q) -- 5 K(~\1,5;A,C)cp(5)d5+r(9;A,C)+r~t9) 

--XI 

r i$; A, C) z - f& [ G (A, ;;C, E) +lmZ (C, $; z, %) q (% 5)&t 
i 

&-- W) 
0 --cm -m 1 

A o 

1 dz 1 G(A,~;~,~)q(~,!J~~+ i G(AdUX) x 
c -Q) -cm 

c 

+p” 
\ z(c,q;O,c)h(c)dc 

) 
dE+ i ~(2C,,5;AXhKWt 

0 -m 

(the change of the order of integration in (29) and in the first and second terms of (31) 

is justified by the second of estimates (21). It follows from (21) and (30) that the norm 

of kernel K (4, 5; A, C) is bounded in L, ((it U $3)) hence (29) is a Fredholm equa- 
tion of the second kind. The resolvent of its kernel is a meromorphic function whose 

poles are roots of the polynomial /6/ 

S-J 

& ($7 5; A, C) = c,K ($5; A, C) - n s K We; A, C) h-1 (kc; A, C) d0 
0 

It is clear that the coefficients (and also the roots) of the polynomial D (Y) depend 
on A and C as parameters. Hence the number v = 1 can be a characteristic one not 
more than in a denumerable set of finite values of A and C, and, consequently, solu- 

tions of Eq. (29) and of problem (16), (17) are unique for almost any A and c. 

Remarks. 1’. Since coefficients in (12), which depend on the first approximation 
solution u0 (s, Q) and its derivatives, are bounded continuous functions, hence they satisfy 

conditions (1) and (3) of the above theorems. Functions g (s, Q, u,,.J in (12), and a, ($), 
and cxr (t#) in (13) satisfy conditions (4) and (5), respectively, as well as estimate (18) 
with h? _ f. In virtue of (14) the inequality in condition (2) is not satisfied for Eq.(lZ). 
However, if the remark related to the derivation of system (11) is taken into account, it 

is possible to substitute 
U (s, 0) = 0 (8s’) > 0 (p ,, 21, G < s < A (32) 

for (14), and consider that condition (2) of the theorem is satisfied also for (12). 

2” . According to /lo/ it is pbssible to reduce the analysis of uniqueness of the 
boundary problem solution of a quasi-linear equation to the analogous analysis of the 
solution of some linear equation with zero boundary conditions. Therefore the unique- 
ness of solution follows from the above theorem, if the existence of a first approximation 
solution of the problem defined by (12), (13), (15) and (32) is assumed. 
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3“ , The theorem proved above with allowance for (32) implies the existence and 

u~quen~s of second approxima~on solution of problem (12) - (15). 

1. 

2. 

3. 

4. 

5. 

6. 

I. 

8. 

9. 

10. 

REFERENCES 

Neiland, V. Ia. and SYCHEV, V. V., On the theory of flow in stationary 

separation zones. Uch. Zap. TsAGI, Vol. 1, No. 1, 1970. 

Batchelor, G. K. , On steady Iaminar flow with closed streamlines at large Rey- 

nolds number. I. Fluid Mech., Vol. 1, pt.2, 1956. 
Matveeva, N. S. and Neiland, V. Ia., The laminar boundary layer cIose 

to an angle point of a body. Izv. Akad. Nauk SSSR, MZhG, No.4, 1967. 

Kochin, N. E. , Kibel’, I. A. and Roze, N. V. , Theoretical Hydromech- 

anics, Vol. 2, Fizmatgiz, Moscow, 1963. 

Tikhonov, A. N. and Samarskii, A. A., Equations of Ma~ematical Phy- 

sics. (English translation), Pergamon Press, Book No. 10226, 1963. 

Integral Equations. Mathematical Reference Library. “Nauka”, Moscow, 1968. 

Van Dyke, M., Theory of compressible boundary layer in the second approxi- 

mation. Collection : Investigation of Hypersonic Flows (Russian translation), 

“Mir”, Moscow, 1964, 

Il’in, A. M., Kalashnikov, A. S. and Oleinik, 0. A., Second order 

linear equations of the parabolic kind, Uspekhi Matem. Nauk, Vol. 17, No. 3 (105). 

1962. 

Slobodetskii, L. N., Potential theory for parabolic equations. Dokl. Akad. 

Nauk SSSR, Vol. 103, No. 1, 1955. 

Courant, R., Differential Equations with Partial Derivatives. “Nauka”, Moscow, 

1964. 
Translated by J. J. D. 

UDC 532.529 

ON THE EQUATIONS OF GABON OF A LIQUID WITH BUBBLES 

PMM Vol. 39, No.5, 1975, pp. 845-856 

0. V. VOINOV and A. G. PETROV 

(Moscow) 
(Received June 18, 1974) 

An arbitrary irrotational flow of perfect in~ompr~ibIe Xiquid containing a con- 

siderable number of spherical gas bubbles is considered. Two methods of avera- 
ging exact characteristics of the motion of bubbles in the liquid, viz. by volume 

and by bubble centers, are introduced, Formulas relating the average quantities 
of two different kinds are derived. The boundary value problem for the mean 
potential is formulated on the basis of the exact boundary value problem for the 
velocity potential. The obtained equation for the potential in the particular case 

of unbounded liquid with low concentration of bubbles coincides with that derived 

in /l/. 
It is shown that dynamic equations for the average characteristics of moving 

bubbles accurate to within the product of volume concentration by the velocity 


